

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 693 (2008) 1751-1758

www.elsevier.com/locate/jorganchem

Re-visiting of 5-[(*E*)-2-(aryl)-1-diazenyl]-quinolin-8-ol with tweaking of Sn–Ph groups: Synthesis, spectroscopic characterization and X-ray crystallography

Tushar S. Basu Baul^{a,*}, Archana Mizar^a, Eleonora Rivarola^b, Ulli Englert^{c,*}

^a Department of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India ^b Dipartimento di Chimica Inorganica e Analitica "Stanislao Cannizzaro", Università di Palermo, Viale delle Scienze, Parco D'Orleans II,

Edificio 17, 90128 Palermo, Italy

^c Institut für Anorganische Chemie, RWTH Aachen University, 52056 Aachen, Germany

Received 3 November 2007; received in revised form 24 December 2007; accepted 24 December 2007 Available online 8 January 2008

Abstract

Reactions of sodium 5-[(*E*)-2-(aryl)-1-diazenyl]quinolin-8-olates (LH, where the aryl group is an R-substituted phenyl ring such that for L¹H: R = H; L²H: R = 2'-CH₃; L³H: R = 3'-CH₃; L⁴H: R = 4'-CH₃; L⁵H: R = 4'-OCH₃ and L⁶H: R = 4'-OC₂H₅) with Ph₃SnCl in a 1:1 molar ratio yielded complexes of composition Ph₃SnL. The complexes have been characterized by ¹H, ¹³C, ¹¹⁹Sn NMR, IR and ^{119m}Sn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of Ph₃SnL¹ · 0.5C₆H₆ (1), Ph₃SnL² (2), Ph₃SnL⁵ · C₆H₆ (5) and Ph₃SnL⁶ · 0.5C₆H₆ (6) were determined. The results of the X-ray studies indicated that the benzene solvated compounds 1, 5 and 6 are distorted square pyramid, with one of the phenyl C atoms in the apex while the ligand arrangement around central Sn atom in 2 is distorted trigonal-bipyramidal, with a phenyl C and the oxinato N atoms in axial positions. © 2008 Elsevier B.V. All rights reserved.

Keywords: Triphenyltin; 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olates; NMR; Mössbauer; Crystal structure

1. Introduction

The chemical, biological and pharmaceutical properties of organotin(IV) complexes have been extensively studied and in this perspective, the structure-antitumour activity relations have also been studied for di- and triorganotin(IV) oxinates and thiooxinates [1]. Because of the important applications, the structures of this class of compounds have received considerable attention. The ability of organotin(IV) moieties to react with quinolin-8-ol is well established and classical examples with R_2SnLX (fivecoordinate), R₂SnL₂ (six-coordinate) and RSnL₃ (sevencoordinate) ($\mathbf{R} = alkyl$ or aryl, $\mathbf{L} = quinolin-8$ -olate and X = halogen or isothiocvanate) are known [2–5]. Although most of the conventional techniques, namely ¹¹⁹Sn Mössbauer [2,6], IR [2,3], UV [7] and NMR [3,8] spectroscopic techniques, have been employed as aids in structural investigations, the geometry of certain of these organotin(IV) quinolin-8-olate(s) was unclear. Consequently, a few organotin(IV) quinolin-8-olates have been investigated by X-ray crystallography. The diorganotin(IV) bis(quinolin-8-olate) group of compounds has received most attention and an X-ray crystal studies of R_2SnL_2 , for e.g., R = Me[9], *p*-ClPh and *p*-MePh [10], ^{*n*}Bu and Cl [11], ^{*n*}Bu [12], ^tBu [12] and Ph [13], showed a highly distorted octahedral molecule with bidentate quinolin-8-olate groups and essentially cis-organo groups. In addition, structural information on other two types, viz., R₂SnLX (e.g., $R = EtCO_2Me$ and X = Cl [14] and $RSnL_3$ (R = p-ClPh)

^{*} Corresponding authors. Tel.: +91 364 2722626, fax: +91 364 2550076 (T.S. Basu Baul), tel.: +49 241 8094666; fax: +49 241 8092288 (U. Englert).

E-mail addresses: basubaul@nehu.ac.in, basubaul@hotmail.com (T.S. Basu Baul), ullrich.englert@ac.rwth-aachen.de (U. Englert).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.12.032

[15] are also available. Recently, we have also reported six diorganotin(IV) complexes of the type R_2SnL_2 (R = Ph or Bz: L = 5 - [(E) - 2 - (arvl) - 1 - diazenvl] - guinolin-8 - olate) [16,17]and these complexes also conform to the same distorted *cis*-octahedral geometry as described for diorganotin(IV) bis(quinolin-8-olate). On the other hand, there has been some disagreement concerning the structure of Ph₃SnL, both four- [18] and five-coordinate [19] structures having been assigned on the basis of ¹¹⁹Sn Mössbauer from the magnitude of the quadrupole splitting. Finally it was concluded that Ph₃SnL is five-coordinate where two phenyl groups and a nitrogen atom are in equatorial positions while a phenyl group and an oxygen atom from the quinolin-8-olate ligand takes up the apical positions [19]. Nevertheless, there is no report on structural characterization of Ph₃SnL by X-ray crystallographic technique.

The present paper reports the results of extending the organotin(IV) work, particularly Ph₃Sn, with the stable and bulkier 5-[(*E*)-2-(aryl)-1-diazenyl]-quinolin-8-olate ligand system (Fig. 1) which is aimed at the evaluation of the bonding mode(s) of the triphenyltin(IV) complexes from a detailed analysis of their IR, NMR (¹H, ¹³C, ¹¹⁹Sn) and ^{119m}Sn Mössbauer spectra. Further, in the course of studies in this area, a series of triphenyltin(IV) complexes provided X-ray quality crystals which have been chosen in the quest to determine the complete stereochemical analyses of the triphenyltin(IV) complexes. The crystal and molecular structures of triphenyltin(IV) complexes, viz., Ph₃SnL¹ · 0.5C₆H₆ (1), Ph₃SnL² (2), Ph₃SnL⁵ · C₆H₆ (5) and Ph₃SnL⁶ · 0.5C₆H₆ (6) are also reported.

2. Experimental

2.1. Materials

 Ph_3SnCl , Oxine (Merck) and the substituted anilines (reagent grade) were used without further purification. The solvents used in the reactions were of AR grade and dried using standard procedures. Benzene was distilled from sodium benzophenone ketyl.

2.2. Physical measurements

Carbon, hydrogen and nitrogen analyses were performed with a Perkin-Elmer 2400 series II instrument. IR

Fig. 1. Generic structure of the ligand (*Abbreviations*. $L^{1}H$: R = H; $L^{2}H$: R = 2'-CH₃; $L^{3}H$: R = 3'-CH₃; $L^{4}H$: R = 4'-CH₃; $L^{5}H$: R = 4'-OCH₃; $L^{6}H$: R = 4'-OC₄; $L^{6}H$: R = 4'-OC₄, where H represents hydroxyl proton).

spectra in the range $4000-400 \text{ cm}^{-1}$ were obtained on a Nicolet Impact 410 FT-IR spectrophotometer with samples investigated as KBr discs. The ¹H. ¹³C and ¹¹⁹Sn NMR spectra were recorded on a Bruker AMX 400 spectrometer and measured at 400.13, 100.62 and 149.18 MHz, respec-tively. The ¹H, ¹³C and ¹¹⁹Sn chemical shifts were referenced to Me₄Si set at 0.00 ppm, CDCl₃ set at 77.0 ppm and Me₄Sn set at 0.00 ppm, respectively. Mössbauer spectra were recorded on solid samples at liquid nitrogen temperature by using a conventional constant acceleration spectrometer, coupled with a multichannel analyser (a.e.n., Ponteranica (BG), Italy) equipped with a cryostat Cryo (RIAL, Parma, Italy). A Ca¹¹⁹SnO₃ Mössbauer source, 10 mCi (from Ritverc, St. Petersburg, Russia) moving at room temperature with constant acceleration in a triangular waveform was used. The velocity calibration was made using a ⁵⁷Co Mössbauer source, 10 mCi, and an iron foil as absorber (from Ritverc, St Petersburg, Russia).

2.3. Synthesis of 5-[(E)-2-(aryl)-1-(diazenyl)quinolin-8-ols

The 5-[(*E*)-2-(aryl)-1-(diazenyl)]quinolin-8-ols, viz., $L^{1}H$ to $L^{6}H$ were prepared by the method described earlier [16,17].

2.4. Synthesis of triphenyltin(IV) complexes

A typical method is described below.

2.4.1. Synthesis of $Ph_3SnL^1 \cdot 0.5C_6H_6$ (1)

A methanolic solution of sodium methoxide (generated in situ from 0.046 g, 2.00 mmol of Na in 15 ml anhydrous methanol) was added drop-wise into a stirred hot anhydrous benzene solution (40 ml) containing $L^{1}H$ (0.5 g, 2.00 mmol). After complete addition, a precipitate appears and the stirring continued for 15 min. To this reaction mixture, an anhydrous benzene solution (15 ml) of Ph₃SnCl (0.77 g, 1.99 mmol) was added drop-wise which resulted in the disappearance of the precipitate. The reaction mixture was refluxed for 3 h and filtered to remove NaCl. The filtrate was collected and the solvent was removed under reduced pressure. The resultant residue was washed several times with hot hexane, dried in vacuo, dissolved in benzene and filtered to remove any suspended particles. The filtrate was concentrated and precipitated with hexane. The crude product was recrystallized from a mixture of benzene and hexane (v/v 1:1), which upon evaporation at room temperature afforded maroon colored crystalline product. Yield: 0.47 g (39.1%), m.p. 115-116 °C. Anal. Calc. for C₃₆H₂₈N₃OSn: C, 67.84; H, 4.42; N, 6.59. Found: C, 67.80; H, 4.32; N, 6.51%. IR (cm⁻¹): 1250 v(C(aryl)O). ¹H NMR (CDCl₃, 400.13 MHz); δ H: ligand skeleton: 9.45 [dd, 1H, H4], 8.26 [dd, 1H, H2], 8.22 [d, 1H, H6], 7.95 [d, 2H, H2' and H6'], 7.66 [m, 1H, H3], 7.52 [m, 2H, H3' and H5'], 7.45 [d, 1H, H4'], 7.26 [d, 1H, H7]; Sn-Ph skeleton: 7.59 [m, 6H, H2*], 7.35 [m, 9H, H3* and H4*] ppm. ¹³C NMR (CDCl₃, 100.62 MHz); δC: 160.3 [C8],

153.4 [C1'], 145.1 [C2], 137.5 [C5], 136.9 [C8a], 135.2 [C4], 128.5 [C3' and C5'], 128.3 [C4'], 127.8 [C4a], 122.5 [C3, C2' and C6'], 118.2 [C6], 114.1 [C-7]; Sn–Ph skeleton: 144.6 [C1*], 136.2 [C2*], 130.0 [C4*], 129.0 [C3*] ppm. ¹¹⁹Sn NMR (CDCl₃, 149.18 MHz) δSn: -183.9 ppm. ¹¹⁹Sn Mössbauer: $\delta = 1.09$, $\Delta = 1.99$, $\Gamma_1 = 0.82$, $\Gamma_2 = 0.82$ mm s⁻¹.

The other triphenyltin(IV) complexes (2–6) were prepared by reacting Ph_3SnCl with the appropriate ligand (L^2H-L^6H) by following an analogous procedure. The characterization data and spectroscopic data of the complexes are given below.

2.4.2. Synthesis of Ph_3SnL^2 (2)

Orange crystals of 2 were obtained from a mixture of benzene and hexane mixture (v/v 1:1). Yield: 0.57 g (49.1%), m.p. 182–183 °C. Anal. Calc. for C₃₇H₂₇-N₃OSn: C, 66.67; H, 4.44; N, 6.89. Found: C, 66.60; H. 4.34; N, 6.79%. IR (cm⁻¹): 1249 v(C(aryl)O). ¹H NMR (CDCl₃, 400.13 MHz) δ H: ligand skeleton: 9.45 [dd, 1H, H4], 8.26 [dd, 1H, H2], 8.18 [d, 1H, H6], 7.72 [d, 1H, H6'], 7.55 [m, 2H, H3 and H5'], 7.35 [m, 2H, H3' and H4'], 7.26 [d, 1H and H7], 2.75 [s, 3H, CH3]; Sn-Ph skeleton: 7.69 [m, 6H, H2*], 7.35 [m, 9H, H3* and H4*] ppm. ¹³C NMR (CDCl₃, 100.62 MHz); SC: 160.0 [C8], 151.4 [C1'], 145.0 [C2], 137.5 [C5], 137.4 [C2'], 135.3 [C8a], 131.2 [C4], 130.0 [C3'], 128.4 [C4'], 127.7 [C4a], 126.3 [C5'], 122.5 [C3], 118.5 [C6'], 115.5 [C6], 114.0 [C7], 17.7 [CH3]: Sn-Ph skeleton: 144.7 [C1^{*}], 136.1 [C2^{*}], 129.0 [C4^{*}], 128.4 [C3^{*}] ppm. ¹¹⁹Sn NMR (CDCl₃, 149.18 MHz) δ Sn: -184.5 ppm. ¹¹⁹Sn Mössbauer: $\delta = 1.11$, $\Delta = 2.12$, $\Gamma_1 = 0.83, \ \Gamma_2 = 0.83 \text{ mm s}^{-1}.$

2.4.3. Synthesis of Ph_3SnL^3 (3)

Orange crystalline product of 3 was obtained from a mixture of benzene and hexane $(v/v \ 1:1)$. Yield: 0.33 g (28.1%). m.p. 152–153 °C. Anal. Calc. for C₃₄H₂₇N₃OSn: C, 66.67; H, 4.44; N, 6.89. Found: C, 66.57; H, 4.34; N, 7.01%. IR (cm⁻¹): 1252 v(C(aryl)O). ¹H NMR (CDCl₃, 400.13 MHz) δ H: ligand skeleton: 9.47 [dd, 1H, H4], 8.28 [dd, 1H, H2], 8.18 [d, 1H, H6], 7.77 [m, 2H, H2' and H6'], 7.53 [m, 1H, H3], 7.35 [m, 2H, H4' and H5'], 7.27 [d, 1H, H7], 2.48 [s, 3H, CH3]; Sn-Ph skeleton: 7.59 [m, 6H, H2*], 7.35 [m, 9H, H3* and H4*] ppm. ¹³C NMR (CDCl₃, 100.62 MHz); δ C: 160.1 [C8], 153.5 [C1'], 145.1 [C2], 138.9 [C5], 136.9 [C3'], 135.3 [C8a], 130.9 [C4], 128.8 [C4'], 128.1 [C5'], 127.7 [C4a], 123.0 [C2'], 122.4 [C3], 119.9 [C6'], 118.2 [C6], 114.1 [C-7], 21.4 [CH3]; Sn-Ph skeleton: 144.7 [C1*], 136.2 [C2*], 129.0 [C4*], 128.4 [C3*] ppm. ¹¹⁹Sn NMR (CDCl₃, 149.18 MHz) δ Sn: -184.3 ppm. ¹¹⁹Sn Mössbauer: $\delta = 1.11$, $\Delta = 2.03$, $\Gamma_1 = 0.\hat{83}, \ \Gamma_2 = 0.83 \text{ mm s}^{-1}.$

2.4.4. Synthesis of Ph_3SnL^4 (4)

Maroon crystals of 4 were obtained from a mixture of benzene and hexane (v/v 2:1). Yield: 0.47 g (40.5%). m.p.

154-155 °C. Anal. Calc. for C₃₄H₂₇N₃OSn: C, 66.67; H, 4.44; N, 6.89. Found: C, 66.66; H, 4.34; N, 6.80%. IR $(cm^{-1}):$ 1250 v(C(arvl)O). ^{1}H NMR (CDCl₃. 400.13 MHz) δ H: ligand skeleton: 9.43 [dd, 1H, H4], 8.26 [dd, 1H, H2], 8.19 [d, 1H, H6], 7.87 [d, 2H, H2' and H6'], 7.51 [m, 1H, H3], 7.35 [m, 2H, H3' and H5'], 7.25 [d, 1H, H7], 2.48 [s, 3H, CH3]; Sn-Ph skeleton: 7.59 [m, 6H, H2*], 7.35 [m, 9H, H3* and H4*] ppm. ¹³C NMR (CDCl₃ 100.62 MHz); δC: 159.9 [C8], 151.5 [C1'], 145.0 [C2], 143.4 [C4'], 140.5 [C5], 135.3 [C8a], 128.4 [C3' and C5'], 128.3 [C4], 127.7 [C4a], 122.5 [C2' and C6'], 122.4 [C3], 117.9 [C6], 114.1 [C7], 21.4 [CH3]: Sn-Ph skeleton: 144.7 [C1*], 136.2 [C2*], 129.7 [C4*], 129.0 [C3*] ppm. ¹¹⁹Sn NMR (CDCl₃, 149.18 MHz) δSn: -184.1 ppm. ¹¹⁹Sn Mössbauer: $\delta = 1.08$, $\Delta = 1.99$, $\Gamma_1 =$ 0.80, $\Gamma_2 = 0.80 \text{ mm s}^{-1}$.

2.4.5. Synthesis of $Ph_3SnL^5 \cdot C_6H_6$ (5)

Orange crystals of 5 were obtained from a mixture of benzene and hexane (v/v 1:1). Yield: 0.35 g (51.4%). m.p. 96-97 °C. Anal. Calc. for C40H33N3O2Sn: C, 68.01; H, 4.71; N, 5.94. Found: C, 68.10; H, 4.61; N, 5.90%. IR (cm^{-1}) : 1247 v(C(aryl)O). ¹H NMR (CDCl₃, 400.13) MHz) δ H: ligand skeleton: 9.40 [dd, 1H, H4], 8.28 [dd, 1H, H2], 8.17 [d, 1H, H6], 7.85 [m, 2H, H2' and H6'], 7.55 [m, 2H, H3' and H5'], 7.51 [m, 1H, H3], 7.10 [m, 1H, H7], 3.95 [s, 3H, OCH3]; Sn-Ph skeleton: 7.58 [m, 6H, H2^{*}], 7.55 [m, 9H, H3^{*} and H4^{*}] ppm. ¹³C NMR (CDCl₃, 100.62 MHz); δC: 160.1 [C8], 160.0 [C1'], 150.0 [C4'], 146.6 [C2], 137.2 [C8a]. 130.1 [C4], 129.9 [C4a], 129.6 [C3], 126.2 [C3' and C5'], 123.9 [C6], 119.6 [C7], 116.0 [C2' and C6'], 57.2 [OCH3]: Sn-Ph skeleton: 146.6 [C1*], 136.1 [C2*], 130.6 [C4*], 130.3 [C3*] ppm. ¹¹⁹Sn NMR (CDCl₃, 149.18 MHz) δ Sn: -186.1 ppm. ¹¹⁹Sn Mössbauer: $\delta = 1.06.$ $\Delta = 1.92, \quad \Gamma_1 = 0.89, \quad \Gamma_2 =$ 0.89 mm s^{-1} .

2.4.6. Synthesis of $Ph_3SnL^6 \cdot 0.5 C_6H_6$ (6)

Orange crystals of 6 were obtained from a mixture of benzene and hexane (1:1 v/v). Yield: 0.45 g (54.1%). m.p. 88-90 °C. Anal. Calc. for C₃₈H₃₂N₃O₂Sn: C, 67.00; H, 4.73; N, 6.16. Found: C, 67.10; H, 4.63; N, 6.15%. IR $(cm^{-1}):$ 1254 ^{1}H v(C(aryl)O). NMR (CDCl₃, 400.13 MHz) δ H: ligand skeleton: 9.42 [dd, 1H, H4], 9.25 [dd, 1H, H2], 8.18 [d, 1H, H6], 7.92 [m, 2H, H2' and H6'], 7.51 [m, 1H, H3], 7.33 [m, 1H, H7], 7.10 [m, 2H, H3' and H5'], 4.10 [q, 2H, OCH₂CH₃], 1.5 [t, 3H, OCH₂CH₃]; Sn-Ph skeleton: 7.55 [m, 6H, H2*], 7.33 [m, ^{13}C NMR (CDCl₃, 9H, H3^{*} and H4^{*}] ppm. 100.62 MHz); δC: 160.9 [C8], 159.7 [C1'], 147.7 [C2], 145.0 [C4'], 143.4 [C5], 136.5 [C8a], 135.3 [C4], 128.5 [C3' and C5'], 127.6 [C4a], 124.3 [C2' and C6'], 122.3 [C3], 117.6 [C6], 114.8 [C7], 63.8 [OCH₂CH₃], 14.8 [OCH₂CH₃]; Sn-Ph skeleton: 144.8 [C1*], 136.2 [C2*], 129.0 [C4*], 128.5 [C3^{*}] ppm. ¹¹⁹Sn NMR (CDCl₃, 149.18 MHz) δ Sn: -185.4 ppm. ¹¹⁹Sn Mössbauer: $\delta = 1.04$, $\Delta = 1.95$, $\Gamma_1 = 0.86, \ \Gamma_2 = 0.86 \ \mathrm{mm \ s^{-1}}.$

2.5. X-ray crystallography

Crystals of the triphenvltin(IV) compounds 1. 2. 5 and 6 suitable for single crystal X-ray structure determination were obtained from slow evaporation of benzene/hexane (1:1 v/v) solutions. Intensity data were collected with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å), either on a Nonius CAD4 diffractometer (for 1) or a Bruker D8 goniometer equipped with a SMART APEX CCD detector (for 2, 5 and 6). Crystal data, data collection parameters and convergence results are listed in Table 1. Empirical absorption corrections based on a multiscan approach [20] or, for the CAD4 data, on azimuthal scans [21] were applied to the data sets before averaging over symmetry-related reflections. The structures were solved by direct methods with the help of the SHELXS-97 program [22] and refined on reflection intensities F^2 using SHELXL-97 [23]. In the final least-squares refinements, all non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were placed in idealized positions and included as riding on the corresponding atoms. Compounds 1 and 6 represent hemisolvates, both with a benzene molecule located on a crystallographic inversion center and the complex molecules in general position, whereas 5 contains one benzene per complex molecule. Further details on the structures are available as supplementary material in CIF format, see below.

3. Results and discussion

3.1. Syntheses

The triphenyltin(IV) complexes (1–6) were prepared by reacting the sodium salts of the ligands ($L^{1-2}Na$, generated in situ from Na and anhydrous methanol) with the Ph₃SnCl in 1:1 molar ratios in anhydrous benzene by following procedure similar to that described by Clark et al. [24]. The work-up details and characterization data for the complexes are described in Section 2.4. The complexes could be isolated by fractional crystallization with high purity in moderate yield (28–54%). The complexes are crystalline in nature, stable in air and soluble in all common organic solvents.

 $LNa + Ph_{3}SnCl \underbrace{\xrightarrow{Benzene}}_{Conditions:Stir/reflux, \ 3 \ h} Ph_{3}SnL + NaCl$

3.2. IR spectra

The IR spectra of the ligands, $L^{1}H-L^{6}H$ are reported in Refs. [16,17] while their triphenyltin(IV) complexes, **1–6** are reported in Section 2.4. The v(OH) in $L^{1}H-L^{6}H$ occurs at around 3380 cm⁻¹ as broad band which is assigned due to the presence of intermolecular H-bonding interactions involving the O–H–N bonds which is found to be absent

Table 1

Crystal data, data collection parameters and convergence results for compounds 1, 2, 5 and 6

	1	2	5	6	
Empirical formula	C ₃₆ H ₂₈ N ₃ OSn	C34H27N3OSn	C40H33N3O2Sn	C38H32N3O2Sn	
Formula weight	637.30	612.28	706.39	681.36	
Crystal size (mm)	0.50 imes 0.50 imes 0.10	0.31 imes 0.14 imes 0.12	0.34 imes 0.25 imes 0.04	0.52 imes 0.26 imes 0.04	
Crystal shape	Plate	Rod	Plate	Plate	
Temperature (K)	293(2)	293(2)	110(2)	203(2)	
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	
Space group	$P\overline{1}$	C2/c	$P\overline{1}$	$P\bar{1}$	
a (Å)	9.6623(9)	31.563(5)	8.873(8)	8.5573(8)	
<i>b</i> (Å)	11.0909(11)	9.1928(13)	11.296(11)	9.1331(9)	
<i>c</i> (Å)	14.3096(8)	22.763(3)	16.636(16)	20.895(2)	
α (°)	79.645(6)		97.57(2)	99.741(2)	
β (°)	86.971(6)	119.404(2)	99.25(2)	90.912(2)	
γ (°)	82.161(8)		96.55(2)	103.737(2)	
$V(\text{\AA}^3)$	1493.8(2)	5753.9(14)	1616(3)	1560.8(3)	
Z	2	8	2	2	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.417	1.414	1.452	1.450	
$\mu (\mathrm{mm}^{-1})$	0.888	0.919	0.831	0.857	
Transmission factors (min, max)	0.665, 0.916	0.760, 0.900	0.765, 0.967	0.660, 0.970	
$2\theta_{\max}$ (°)	28.0	30.1	27.3	27.1	
Reflections measured	14372	42002	25900	23907	
Independent reflections; $R_{\rm int}$	7189; 0.047	8288; 0.054	7211; 0.063	6792; 0.087	
Reflections with $I > 2\sigma(I)$	5050	6766	6392	5145	
Number of parameters	370	353	416	398	
Number of restraints	0	0	0	1	
$R(F)$ [$I > 2\sigma(I)$ reflections]	0.041	0.050	0.036	0.061	
$wR(F^2)$ (all data)	0.083	0.114	0.088	0.133	
Goodness-of-fit (F^2)	1.01	1.09	1.02	1.10	
$\Delta \rho \max, \min (e \mathring{A}^{-3})$	0.39, -0.30	0.88, -0.66	0.93, -0.42	0.74, -1.26	

in the triphenyltin complexes, **1–6**, confirming bonding through the O-atom of the ligand [16,17]. A strong band at around 1235 cm⁻¹ in the ligands is found to be shifted to around 1250 cm⁻¹ in the complexes, is assigned to the v(C(aryl)-O) (i.e. C8–O).

3.3. ¹¹⁹Sn Mössbauer spectra

The ¹¹⁹Sn Mössbauer data, i.e. isomer shift (δ), quadrupole splittings (Δ) and the line widths at half-peak height (Γ) for the triphenyltin complexes (**1–6**) are given in Section 2.4. In general, the complexes displayed a doublet with δ and Δ values in the range 1.04–1.11 and 1.92–2.12 mm s⁻¹, respectively. The δ values found (1.04–1.11 mm s⁻¹) are typical of quadrivalent organotin derivatives [25]. The Ph₃SnL₂ (L = electronegative ligands, e.g., O, N and halogen) type compounds may exists in one of the three isomeric forms (**I–III**, Fig. 2) and they can be readily distinguished by the Δ values.

On the basis of point charge treatment, the calculated Δ values for five-coordinate trigonal bipyramid Ph₃SnL₂ type compounds were ca. 1.65 mm s^{-1} , 2.85 mm s^{-1} and 3.28 mm s^{-1} and these were assigned for the *facial*- (I), equatorial- (III) and meridional-R₃ (II) geometries, respectively [26]. The observed Mössbauer \varDelta values for complexes (1-6) are in the range 1.92–2.12 mm s⁻¹ and the values are greater than for the *facial*-structure (I) and smaller for the *equatorial*-structure (III). Thus, it may be inferred that the complexes (1-6) adopt preferably a structure (I) and somewhat larger values reflects the possible distortion from the ideal proposed configuration. The Δ value 1.75 mm s⁻¹ for Ph₃SnOx (Ox = quinolin-8-olate) [2,19,27] also falls at the limit specified for facial-R3 trigonal-bipyramidal geometry [25]. The larger \varDelta values observed in the triphenyltin 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olate (1-6) compared to Ph₃SnOx could be ascribed to the coordination of bulky 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olate ligand and agrees well with the value 1.99 mm s^{-1} reported for tribenzyltin(IV) complex $(C_6H_5CH_2)_3Sn(SPyO)$ (HSPyO: 2-mercaptopyridine) where a square pyramidal structure was reported [25]. The extent of distortion from facial-trigonal-bipyramidal geometry is clearly evident from the Mössbauer data and this has been clearly reflected from the results of diffraction studies on the triphenvltin 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olate (1, 2, 5 and 6) (see Section 3.4).

R R Ĺ (I) (II) (III)

Fig. 2. Possible isomeric forms (I–III) in Ph_3SnL_2 type compounds.

3.4. Crystal structures

Compounds 1, 2, 5 and 6 represent the first examples of structurally characterized triphenyltin(IV) compounds containing the ligand quinolin-8-olate. In all the complexes, a single 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olate ligandchelates the triphenvltin moiety, as illustrated in Figs. 3-6. Selected geometric parameters are collected in Table 2. Compounds 1 and 6 crystallize as benzene hemisolvates while 5 includes one molecule of benzene per complex. Five-coordination of the central Sn atom suggests structural variability which is indeed encountered. The results of the X-ray studies indicate that the benzene solvated compounds 1, 5 and 6 are closely related with respect to the coordination of the central Sn atom. In these cases, the coordination polyhedron around Sn is best described as a distorted square pyramid, with one of the phenyl C atoms in the apex. In contrast, the ligand arrangement around central Sn atom in 2 is distorted trigonal-bipyramidal, with a phenyl C and the oxinato N in axial positions. A synopsis of the Sn coordination in all four compounds (1. 2, 5 and 6) is shown in Fig. 7.

The above interpretation is corroborated by the fact that the Sn-N bond in 2, the only compound with a N-bonded

Fig. 3. Displacement ellipsoid plot (50% probability ellipsoids) of the molecular structure of 1 with the atom-labelling scheme. Hydrogen atoms and the solvent molecule have been omitted for clarity.

Fig. 4. The molecular structure of 2 with the atom-labelling scheme (50% probability ellipsoids). Hydrogen atoms have been omitted for clarity.

Fig. 5. The molecular structure of **5** with the atom-labelling scheme (50% probability ellipsoids). Hydrogen atoms and the solvent molecule have been omitted for clarity.

Fig. 6. The molecular structure of 6 with the atom-labelling scheme (50% probability ellipsoids). Hydrogen atoms and the solvent molecule have been omitted for clarity.

Table 2 Selected bond lengths (Å) and angles (°) for compounds **1**, **2**, **5** and **6**

Fig. 7. Square-pyramidal (sp) Sn coordination in triphenyltin(IV) compounds 1, 5 and 6 and trigonal-bipyramidal (tbp) coordination in 2; the numbers in parentheses denote the percentage of Berry pseudorotation from tbp to sp. [28,29]. Color code: Sn, light grey; N, white; O, dark grey; C, black.

ligand in an axial position, amounts to 2.528(2) Å and is significantly longer than the Sn-N distances in the other three compounds 1, 5 and 6 (min 2.409(4), max 2.438(3) Å). In line with this argument, the axial Sn–C bond in 2 (2.170(3) Å) is longer than the equatorial Sn–C bonds (2.130(3) and 2.134(3) Å). Distorted trigonal-bipyramidal coordination geometries have been described by Strutchkov et al. [30] for two symmetrically independent molecules of a thioxinate. In this report, the longest Sn-C bond is also associated with the ligand in axial position. With respect to intermolecular interactions, solid 1, 2, 5 and 6 represent typical molecular crystals without exceptionally short contacts. Intermolecular distances significantly shorter than the sum of the van der Waals radii only occur between H and alkoxy O atoms in 5 and 6 and amount to ca. 2.45 Å.

3.5. Solution ¹H, ¹³C, ¹¹⁹Sn NMR spectra

Further characterization was accomplished from the NMR spectra of complexes 1-6 in order to obtain structural information in solution. The assignments of ¹H and ¹³C NMR signals of L¹H-L⁶H were described earlier

Selected bond lengths (A) and angles (*) for compounds 1, 2, 5 and 6										
1		2		5		6				
Sn(1)–O(1)	2.088(2)	Sn(1)–O(1)	2.063(2)	Sn(1)–O(1)	2.101(3)	Sn(1)–O(1)	2.072(4)			
Sn(1)-N(1)	2.438(3)	Sn(1)-N(1)	2.528(2)	Sn(1)-N(1)	2.428(3)	Sn(1)-N(1)	2.409(4)			
Sn(1)-C(22)	2.137(3)	Sn(1)-C(40)	2.130(3)	Sn(1)-C(23)	2.165(3)	Sn(1)-C(50)	2.159(6)			
Sn(1)-C(28)	2.160(3)	Sn(1)–C(20)	2.134(3)	Sn(1)-C(17)	2.153(3)	Sn(1)-C(60)	2.160(6)			
Sn(1)-C(16)	2.142(3)	Sn(1)-C(30)	2.170(3)	Sn(1)-C(29)	2.137(3)	Sn(1)-C(40)	2.153(6)			
O(1)–C(1)	1.325(3)	O(1)–C(1)	1.329(3)	O(1) - C(1)	1.323(3)	O(1)–C(1)	1.338(6)			
N(1)–C(2)	1.354(4)	N(1)-C(2)	1.357(4)	N(1)-C(2)	1.361(3)	N(1)-C(2)	1.360(7)			
N(1)-C(3)	1.319(4)	N(1)-C(3)	1.321(4)	N(1)-C(3)	1.322(4)	N(1)-C (3)	1.319(7)			
N(2)–N(3)	1.255(3)	N(2)–N(3)	1.251(4)	N(2)–N(3)	1.260(3)	N(2)–N(3)	1.268(6)			
C(22)-Sn(1)-C(28)	109.17(12)	C(40)-Sn(1)-C(20)	119.84(11)	C(23)-Sn(1)-C(29)	110.39(12)	C(50)-Sn(1)-C(60)	101.1(2)			
C(28)-Sn(1)-C(16)	102.30(12)	C(20)-Sn(1)-C(30)	103.67(11)	C(29)-Sn(1)-C(17)	108.70(12)	C(60)-Sn(1)-C(40)	106.80(2)			
C(16)-Sn(1)-C(22)	108.46(11)	C(40)-Sn(1)-C(30)	107.99(11)	C(17)-Sn(1)-C(23)	103.03(12)	C(40)-Sn(1)-C(50)	112.0(2)			
C(22)–Sn(1)–O(1)	104.36(10)	C(40)-Sn(1)-O(1)	111.44(10)	C(23)-Sn(1)-O(1)	88.79(10)	C(50)-Sn(1)-O(1)	136.65(19)			
C(28)-Sn(1)-O(1)	87.82(10)	C(20)-Sn(1)-O(1)	120.22(10)	C(29)-Sn(1)-O(1)	103.62(11)	C(60)-Sn(1)-O(1)	87.36(18)			
C(16)-Sn(1)-O(1)	139.87(12)	C(30)-Sn(1)-O(1)	86.82(9)	C(17)-Sn(1)-O(1)	138.66(9)	C(40)-Sn(1)-O(1)	105.71(18)			
N(1)-Sn(1)-O(1)	71.23(8)	N(1)-Sn(1)-O(1)	70.47(8)	N(1)-Sn(1)-O(1)	71.39(8)	N(1)-Sn(1)-O(1)	71.90 (15)			
N(1)-Sn(1)-C(22)	92.90(11)	N(1)-Sn(1)-C(40)	84.92(9)	N(1)-Sn(1)-C(23)	151.79(9)	N(1)-Sn(1)-C(50)	85.90(18)			
N(1)-Sn(1)-C(28)	152.94(11)	N(1)-Sn(1)-C(20)	85.09(10)	N(1)-Sn(1)-C(29)	94.06(11)	N(1)-Sn(1)-C(60)	155.22(18)			
N (1)-Sn(1)-C(16)	84.54(10)	N(1)-Sn(1)-C(30)	156.92(9)	N(1)-Sn(1)-C(17)	81.16(11)	N(1)-Sn(1)-C(40)	92.10(18)			
C(7)-N(2)-N(3)-C(8)	179.7(3)	C(7)-N(2)-N(3)-C(10)	175.3(3)	C(7)-N(2)-N(3)-C(8)	179.7(2)	C(7)-N(2)-N(3)-C(10)	179.5(5)			

1757

[16,17]. The conclusions drawn from the ligand assignments were then subsequently extrapolated to the complexes 1-6 owing to the data similarity.¹ The ¹H NMR integration values were completely consistent with the formulation of the products. The ¹H and ¹³C NMR chemical shift assignment of the triphenyltin moiety is straight forward from the multiplicity pattern, resonance intensities and also by examining the ${}^{n}J({}^{13}C-{}^{119/117}Sn)$ coupling constants [31,32]. In the ¹H and ¹³C NMR spectra of the complexes, 1–6, there is only one set of NMR signals for all the three phenyl groups (Sn-Ph) which provides evidence for the magnetic equivalence of the phenyls on the NMR time scale. This indicates that the predicted positions of the phenyl groups in solid state (see ¹¹⁹Sn Mössbauer and the Xray crystallography discussion, vide supra) is not retained in solution owing to axial-equatorial exchange. The chemical shifts $\delta(^{13}C)$ of the carbon atoms of the phenyl substituents (Sn-Ph) are not very sensitive to changes in the coordination of central tin atom. Nevertheless, the values $\delta(^{13}C(1^*))$, which are shifted mostly around 8–13 ppm downfield, in comparison with those in compounds having four-coordinate tin atom [33].

NMR spectral parameters (¹³C, ¹⁵N and ¹¹⁹Sn (in solution) and ¹¹⁹Sn CP MAS) of Ph₃SnOx have been investigated in great detail [34-37]. The results of ¹¹⁹Sn CP MAS (in absence of X-ray diffraction data of Ph₃SnOx) and ¹¹⁹Sn (solution) NMR spectra indicated that the solid state structure of triphenyltin(IV) quinolin-8-olate, i.e. fivecoordinate structure, is retained in solution [37]. In view of this information, the results of ¹³C and ¹¹⁹Sn NMR have been utilized to provide structural evidence of the complexes (1-6) in solution. The value of the coupling constants ${}^{n}J({}^{119}Sn{}^{-13}C(Sn{}^{-}Ph))$ matches closely with the data for penta-coordinated Ph₃SnOx complex in CDCl₃ solution $({}^{1}J = 633.1, {}^{2}J = 47.8, {}^{3}J = 62.5$ (Hz)) [34]. The triphenvltin(IV) complexes 1-6. all display a sharp singlet in the range -184 to -186 ppm and the $\delta(^{119}\text{Sn})$ chemical shifts lie inside the range delimited for five-coordinate triphenyltin(IV) compounds [33]. The δ (¹¹⁹Sn) values are comparable with the shift observed for Ph₃SnOx $(-190.1 \text{ ppm in CDCl}_3 \text{ solution } [33,36])$. Thus, ¹¹⁹Sn NMR data indicate that the complexes (1-6) remain fivecoordinated and retain their connectivity (see Mössbauer and X-ray discussion) in solution.

4. Supplementary material

CCDC 664444, 664445, 664446 and 664447 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge

¹ Ligand numbering scheme as shown in Fig. 1 and numbering scheme for Sn–Ph skeleton as shown below:

Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Acknowledgements

The financial support of the Department of Science and Technology, New Delhi, India (Grant No. SR/S1/IC-03/ 2005, TSBB) and the University Grants Commission, New Delhi, India through SAP-DSA, Phase-III is gratefully acknowledged. E.R. is indebted to the Università di Palermo, Italy for the support.

References

- M. Gielen, R. Willem, J. Holeček, A. Lyčka, Main Group Met. Chem. 16 (1993) 29.
- [2] R.C. Poller, J.N.R. Ruddick, J. Chem. Soc. A (1969) 2273.
- [3] K. Kawakami, R. Okawara, J. Organomet. Chem. 6 (1966) 249.
- [4] K. Kawakami, U. Kawasaki, R. Okawara, Bull. Chem. Soc. Japan 40 (1967) 2693.
- [5] T.N. Srivastava, M.P. Agarwal, K.L. Saxena, J. Inorg. Nucl. Chem. 35 (1973) 306.
- [6] B.W. Fitzsimmons, N.J. Seeley, A.W. Smith, J. Chem. Soc. A (1969) 143.
- [7] L. Roncucci, G. Faraglia, R. Barbieri, J. Organomet. Chem. 1 (1964) 427.
- [8] W. Kitching, J. Organomet. Chem. 6 (1966) 586.
- [9] E.O. Schlemper, Inorg. Chem. 6 (1967) 2012.
- [10] W. Chen, W.K. Ng, V.G. Kumar Das, G.B. Jameson, R.J. Butcher, Acta Crystallogr., Sect. C 45 (1989) 861.
- [11] E. Kellö, V. Vrábel, J. Holeček, J. Sivy, J. Organomet. Chem. 493 (1995) 13.
- [12] A. Szorcsik, L. Nagy, M. Scopelliti, A. Deák, L. Pellerito, K. Hegetschweiler, J. Organomet. Chem. 690 (2005) 2243.
- [13] A. Linden, T.S. Basu Baul, A. Mizar, Acta Crystallogr., Sect. E 61 (2005) m27.
- [14] S.W. Ng, C. Wei, V.G. Kumar Das, J.P. Charland, F.E. Smith, J. Organomet. Chem. 364 (1989) 343.
- [15] M. Schumann, R. Schmiedgen, F. Huber, A. Silvestri, G. Ruisi, A.B. Paulsen, R. Barbieri, J. Organomet. Chem. 584 (1999) 103.
- [16] T.S. Basu Baul, A. Mizar, X. Song, G. Eng, R. Willem, M. Biesemans, I. Verbruggen, R. Butcher, J. Organomet. Chem. 691 (2006) 2605.
- [17] T.S. Basu Baul, A. Mizar, A. Lyčka, E. Rivarola, R. Jirásko, M. Holčapek, D. de Vos, U. Englert, J. Organomet. Chem. 691 (2006) 3416.
- [18] J. Ensling, P. Gütlich, K.M. Hassellbach, B.W. Fitzsimmons, J. Chem. Soc. A (1971) 1940.
- [19] R.C. Poller, J.N.R. Ruddick, J. Organomet. Chem. 39 (1972) 121.
- [20] G.M. Sheldrick, SADABS Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.
- [21] A.C.T. North, D.C. Philips, F.S. Mathews, Acta Crystallogr., Sect. A 24 (1968) 351–359.
- [22] G.M. Sheldrick, SHELXS97 Program for Structure Solution, University of Göttingen, Germany, 1997.
- [23] G.M. Sheldrick, SHELXL97 Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [24] H.C. Clark, V.K. Jain, I.J. McMahon, R.C. Mehrotra, J. Organomet. Chem. 243 (1983) 299.
- [25] R. Barbieri, F. Huber, L. Pellerito, G. Ruisi, A. Silvestri, in: P.J. Smith (Ed.), ¹¹⁹Sn Mössbauer Studies on Tin Compounds, Blackie, London, 1998, pp. 496–540.

- [26] B.Y.K. Ho, J.J. Zuckerman, Inorg. Chem. 12 (1973) 1152.
- [27] J.N.R. Ruddick, J.R. Sams, J. Chem. Soc., Dalton Trans. (1974) 470.
- [28] A.L. Spek, J. Appl. Cryst. 36 (2003) 7.
- [29] R.R. Holmes, Prog. Inorg. Chem. 32 (1984) 119.
- [30] N.G. Furmanova, Yu.T. Strutchkov, E.M. Rokhlina, O.N. Kravtsov, Zh. Strukt. Khim. 21 (1980) 87.
- [31] T.A.K. Al-allaf, J. Organomet. Chem. 306 (1986) 337.
- [32] R. Willem, I. Verbruggen, M. Gielen, M. Biesemans, B. Mahieu, T.S. Basu Baul, E.R.T. Tiekink, Organometallics 17 (1998) 5758.
- [33] J. Holeček, M. Nádvorník, K. Handlíř, A. Lyčka, J. Organomet. Chem. 241 (1983) 177.
- [34] A. Lyčka, J. Holeček, M. Nádvorník, K. Handlíř, J. Organomet. Chem. 280 (1985) 323.
- [35] J. Holeček, A. Lyčka, R. Wagener, Collect. Czech. Chem. Commun. 51 (1986) 2116.
- [36] A. Lyčka, J. Holeček, M. Nádvorník, Main Group Met. Chem. 12 (1989) 169.
- [37] A. Lyčka, J. Holeček, B. Schneider, J. Straka, J. Organomet. Chem. 389 (1990) 29.